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ABSTRACT

We tackle the problem of partitioning players into groups of fixed size, such as
allocating eligible students to shared dormitory rooms. Each student submits
preferences over the other individual students. We study several settings, which
differ in the size of the rooms to be filled, the orderedness or completeness
of the preferences, and the way of calculating the value of a coalition—based
on the best or worst roommate in the coalition. In all cases, we determine
the complexity of deciding the existence, and then finding a Pareto optimal
assignment, and the complexity of verifying Pareto optimality for a given
assignment.
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1. INTRODUCTION

he ubiquitous nature of coalition formation has stimulated researchers to
T study the behavior of individuals forming groups (Dreze & Greenberg,
1980; Gamson, 1961; Kahan & Rapoport, 2014; Kelso Jr & Crawford, 1982;
Shehory & Kraus, 1998). A large portion of the game-theoretical studies
focuses on individuals who have ordinal preferences over the possible out-
comes (Banerjee et al., 2001; Bogomolnaia & Jackson, 2002; Cechlérova &
Hajdukovd, 2004a,b; Peters & Elkind, 2015).

Our setting involves n players who need to be partitioned into coalitions.
For convenience, we talk about assigning each player to a room. We assume the
rooms to have no specific feature besides their capacity. To ensure a feasible
partition in the outcome, we assume that the total capacity of rooms adds up
to n, and a feasible assignment fills each room to its capacity. Having once
entered the scheme, players have no option to opt out. Each player submits
her preference list over the other players. Four features of the problem define
various settings, each of which is realistic and will be investigated by us.

(1) Preference lists might be complete or incomplete, the latter term meaning
that players have the right to declare some of the other players unaccept-
able as a roommate. No player can be put in the same room with an
unacceptable roommate.

(1) Players might have strictly or weakly ordered lists.

(1i1) Players might compare two coalitions based on their best or worst as-
signed roommate.

(iv) The rooms might all accommodate 3 players, or they might have a
predefined capacity each, which we denote by ry,ry,...,r; for each of
the k rooms.

The optimality principle we are focusing on is Pareto optimality. A room
assignment, or a set of coalitions, is Pareto optimal if there is no other assign-
ment in which at least one player is better off, and no player is worse off than
in the first assignment. The comparison here is defined based on point (iii)
above. We shorten the term ‘Pareto optimal assignment’ to POA. Our goal is
to study all 24 combinations of the above four features, and for each of them,
determine the complexity of the following three problems:
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(1) verifying whether a given feasible assignment is a POA;
(2) checking whether a POA exists;

(3) finding a POA.

1.1. Related literature

Pareto optimality in coalition formation has a rich literature. We start with an
overview on coalition formation viewed as a hedonic game. Then we review
the settings in which the coalition size matters.

1.1.1. Hedonic games

Coalition formation under preferences can be seen as a hedonic game (Aziz
et al., 2011; Banerjee et al., 2001; Bogomolnaia & Jackson, 2002). In such a
game, players have preferences over the possible coalitions they can be part of,
and coalitions can be of any size—notice that these two basic features differ
strikingly from our setting. Pareto optimal coalition formation as a hedonic
game is extensively studied by Aziz et al. (2013). They analyze two restricted
variants of hedonic games that are closely related to our setting. Both of them
operate under the assumption that the coalition size is arbitrary, but they both
derive players’ preferences on coalitions from a preference list on individual
players. They show that if the preference lists are incomplete, and preferences
are based on the best roommate, then verifying Pareto optimality for a given
assignment is coNP-complete, and computing a POA is NP-hard. For complete
lists and the same preferences, the grand coalition is a trivial optimal solution,
since every player has their first-choice roommate in the sole room. Aziz et al.
(2013) also show that if preferences are based on the worst roommate, then
both verifying Pareto optimality for a given assignment, and computing a POA
can be done in polynomial time.

1.1.2. 2-person rooms

Some of the literature concentrates on each coalition being of size 1 or 2. In
this setting, a player can compare two coalitions simply based on the rank
of the sole roommate (if any exists), so our point (iii) does not apply here.
Using Morrill’s algorithm (Morrill, 2010), Aziz et al. (2013) show that even if
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preferences contain ties, both verifying Pareto optimality for a given matching,
and calculating a POA are solvable in polynomial time. Their results are
valid for complete and incomplete lists as well. Abraham & Manlove (2004)
consider Pareto optimal matchings as a means of coping with instances of
the stable roommates problem with strict lists, which do not admit a stable
matching. They show that while a maximum size POA is easy to find, finding a
minimum size POA is NP-hard.

1.1.3. 3-person rooms

For the setting in which a room can accommodate up to 3 players, two versions
of the problem have been studied. A three-cyclic game is a hedonic game in
which the set of players is divided into men, women, and dogs and the only
kind of acceptable coalitions are man-woman-dog triplets (Knuth, 1976; Ng &
Hirschberg, 1991). Furthermore, men only care about women, women only
care about dogs and dogs only care about men. Computing a POA is known
to be NP-hard for these games, while the corresponding verification problem
is coNP-complete, even for strict preferences (Aziz et al., 2013). In room-
roommate games, a set of players act as rooms, and these have no preferences
whatsoever. The ordinary players, on the other hand, have a preference list over
all possible roommate-room pairs they find acceptable. A triplet is feasible if
exactly one player in it plays a room. If preferences are strict, then a POA can
be computed in polynomial time, but the problem becomes NP-hard as soon
as ties are introduced, even if all lists are complete (Aziz et al., 2013). Just as
in the previous problem, the verification version is coNP-complete, even for
strict preferences (Aziz et al., 2013).

1.1.4. Preferences depending on the room size

Anonymous hedonic games (Ballester, 2004) are a subclass of hedonic games
in which the players’ preferences over coalitions only depend on coalition
sizes. Both verification and finding a POA are hard in such games (Aziz et
al., 2013). Darmann (2018) studies a group activity selection model in which
players have preferences not only on the activity, but also on the number of
participants in their coalition. He provides an efficient algorithm to find a POA,
if each player wants to share an activity with as many, or as few players as
possible.
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As we have seen, a number of papers investigate the complexity of finding
a POA under various settings, such as limited coalition size or preferences
over players rather than over coalitions. However, there is no work on the
combination of these two. In our setting, homogeneous players rank each
other, and form coalitions of an arbitrary, but fixed size.

1.2. Our contribution

We tackle the problems of verifying Pareto optimality, deciding the existence
of POA, and finding a POA for a set of fixed coalition sizes. We distinguish 24
cases, based on the completeness and the orderedness of preferences, the way
of comparing two coalitions by a player, and the room sizes. Our findings are
summarized below and in Figure 1.

e Verification is coNP-complete in all cases. We show this in Section 3 by
two reductions from triangle cover problems.

e If lists are incomplete, then deciding whether a feasible assignment exists
is already NP-complete in all cases. On the other hand, if a feasible
assignment does exist, then an optimal one exists as well. These are due
to a simple NP-completeness reduction and a monotonicity argument,
which can be found in Section 4.

e For complete lists, a POA is bound to exist. In 3 out of the 16 cases,
serial dictatorship delivers one. In all other cases, by computing any
POA in polynomial time, one could answer an NP-complete decision
problem in polynomial time. In Section 5 we elaborate on these easy
and hard cases. For the positive results, we interpret serial dictatorship
in the current problem settings. Then, we utilize a tool developed by
Aziz et al. (2013) in the hardness proofs.

2. PRELIMINARIES

In this section we set the solid mathematical basis for discussing our problems.
Then, we introduce a selection of NP-complete problems and prove that a
specific variant of them is hard as well. We do this to prepare the ground for
our hardness proofs in Sections 3-5.
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Figure 1: The complexity of finding a POA. The arrows explain the case
distinctions according to points (i)—(iv) listed in the Introduction. SD stands
for serial dictatorship.

2.1. Problem definition

Our input consists of a set of players P, with |P| = n, a multiset ry,r,...,rg
of room capacities with r; +ry + ... 4+ r; = n, and strictly ordered, but not
necessary complete preferences for each player i € P on other players. An
assignment R is the partition of P into sets R{,R»,...,R;. This means that
players have no choice to opt out once they have entered the market.

Definition 2.1. An assignment R = {R|,Ry,...,R;} is called feasible if
1. |Ri|=riforeach 1 <i<k;
2. each player in R; declares every other player in the same R; acceptable.

Players evaluate their situation in an assignment solely based on the room-
mates they are grouped together with and do not care about the other rooms.
For point 2 in Definition 2.1, players only need to compare outcomes in which
they find all other roommates acceptable. We define two comparison principles.

When the best roommate counts, coalition R; is preferred to R} by player
i if player j € R ranked highest by i among all players in R; is preferred by
i to player j/ € R ranked highest by i among all players in R. Analogously,
when the worst roommate counts, coalition R; is preferred to R; by player i
if player j € R ranked lowest by i among all players in R; is preferred by i to
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player j/ € R ranked lowest by i among all players in R;. Our definitions are
aligned with # -preferences in (Cechldrova & Hajdukova, 2004b), and with B-
hedonic and W-hedonic games in (Aziz et al., 2013). However, Z-preferences
in (Cechlarova & Hajdukova, 2004b) are different because there the size of the
coalition serves as a tiebreaker in case the best roommate is identical in the
two coalitions. We consider two such coalitions equally good.

2.2. Relevant hard problems

We first introduce two variants of a hard graph cover problem that we will
later use in our hardness reductions, and then go on to consider a bin packing
problem.

Problem 1. TRIANGLE COVER

Input: A simple graph G = (V,E).

Question: Does there exist a partition of V into sets of cardinality 3 so that
for each set, the three vertices span a 3-cycle?

Problem 2. DIRECTED TRIANGLE COVER

Input: A simple directed graph D = (V,A).

Question: Does there exist a partition of V into sets of cardinality 3 so that
for each set, the three vertices span a directed 3-cycle?

The TRIANGLE COVER problem asks for a set of vertex-disjoint 3-cliques
(triangles) in the input graph G, so that these cover all vertices of G. This
problem has been shown to be NP-complete by Garey & Johnson (1979). The
directed version has not been proved to be NP-complete, so we give a simple
hardness proof below. The hard problem we reduce to DIRECTED TRIAN-
GLE COVER is 3D HYPERGRAPH MATCHING (Karp, 1972; Papadimitriou &
Steiglitz, 1982).

Problem 3. 3D HYPERGRAPH MATCHING

Input: A hypergraph H = (UUV UW,E), where each e € E is a triple (u,v,w)
sothatueU,vev, andweW.

Question: Does there exist a perfect matching in H?

Claim 1. DIRECTED TRIANGLE COVER is an NP-complete problem.

Proof. We start with the input graph of an arbitrary instance of 3D HYPER-
GRAPH MATCHING and transform it into an instance of DIRECTED TRIANGLE
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Figure 2: The gadget replacing each hyperedge (u,v,w) € E(H). The unfilled
vertices are gadget vertices, and these are not connected to any vertex outside
of this gadget. Triangles in this gadget are either black or gray. The gray
triangles cover all of these, and leave the remaining three vertices uncovered,
while the black triangles cover all vertices in the gadget.

COVER. We keep the set of vertices, and simply replace each hyperedge
(u,v,w) of H by the gadget shown in Figure 2. This gadget introduces 9 new
vertices per hyperedge to the set of vertices, which we will call the gadget
vertices.

Assume first that a directed triangle cover exists in the resulting directed
graph D. For each gadget, two scenarios can occur. Either vertices a, b, c form
a triangle and then all of u,v, and w must be covered by triangles inside the
same gadget, or triangle (a,b,c) is not in the cover, but then all of u, v, and w
are covered by triangles outside the gadget. The first case corresponds to the
hyperedge (u, v, w) being in our perfect matching M, while the second case tells
otherwise. We still need to show that M is indeed a perfect matching. Firstly,
no vertex can appear in two hyperedges in M, because it would cover the same
vertex twice by directed triangles. Secondly, if a vertex is left unmatched, then
it is also left uncovered by the triangle cover, which is a contradiction.

To show the opposite direction, we first assume that a perfect matching M
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exists in the original instance. We transform it into directed triangles in the
created directed graph D as above: the edges of M will be the gadget with
(a,b,c) (the black triangles), the rest of the edges will be the gadgets without
(a,b,c) (the gray triangles). We need to show that these triangles form a cover.
The gadget vertices are trivially covered exactly once. The rest of the vertices
are matched in M along some hyperedge, and the gadget belonging to this
hyperedge covers them with a triangle inside the gadget. [

Remark 2.1. It is an obvious observation that both TRIANGLE COVER and
DIRECTED TRIANGLE COVER are hard only in graphs for which |V| is a
multiple of 3. We thus assume that G in the input of these hard problems has
this property. Besides this, we can also assume that G is simple, and that each
vertex is of degree at least 2, because graphs with an isolated or a degree 1
vertex are trivial no-instances. For the directed version, one can even assume
that each vertex has at least one outgoing and at least one incoming edge.

We close this section with the final element in our toolbox of hard problems.
The input of UNARY BIN PACKING is a set of item sizes, and a bin size, all
encoded in unary. The goal is to group all items into bins so that the total item
size in each bin is exactly the bin size. This problem has been shown to be
NP-complete by Garey & Johnson (1979).

Problem 4. UNARY BIN PACKING

Input: A set of item sizes iy,iy,...,i,, and a bin size b, all encoded in unary.
Question: Does there exist a partitioning of iy,i3,...,i, so that the sum of
item sizes in each set of the partition adds up to b?

Remark 2.2. For our proofs, we assume that the smallest item size is at least 2.
The hardness of this variant is easy to see. If we take an input of UNARY BIN
PACKING and multiply all item and bin sizes by 2, then we get an equally hard
problem that can be encoded in twice as many bits as the original one.

3. VERIFICATION

In this section, we show the hardness of verification for all cases. We present
two proofs: in Theorem 3.1, the worst roommate defines the base of compari-
son for two coalitions, while it is the best roommate who counts in Theorem 3.2.
Other than this, we restrict our reduction to the least general case of the prob-
lem, having strict and complete lists, and 3-person rooms.
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Theorem 3.1 (Verification, strict and complete lists, worst roommate counts,
3-person rooms). Supposing that the preferences of a player depend on the
worst roommate, verifying whether a given assignment is Pareto optimal is a
coNP-complete task even if all preferences are strict and complete, and every
room is of size 3.

Proof. For each instance G of TRIANGLE COVER we construct an instance
of our verification problem, consisting of players with strict and complete
preferences, and an assignment on which Pareto optimality is to be verified.
We show that a triangle cover exists in the first instance if and only if the
assignment has a Pareto improvement.
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Figure 3: The assignment instance constructed to G in the proof of Theorem 3.1.
The numbers on the edges mark the preferences of the players. Players in V;
rank other players in V| higher than players in V, and V3, as the numbers on
their solid black and dashed gray edges indicate. Players in V, and V3 prefer
their dotted blue edges to their dashed gray edges. The dotted blue edges form
a triangle cover of V, U V3—they connect the leftmost two vertices in V3 with
the rightmost vertex in V5.
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First we draw graph G and also make two further copies of its vertex set V.
We denote these copies by V, and V3. Each vertex in V; UV, U V3 represents
a player in our POA instance. To show hardness in the most general case, we
construct our POA instance with complete preference lists, which translates
into a complete graph on the vertex set V) UV, U V3. The edges of this graph
can be partitioned into four classes.

e The original edges of G are solid and black in Figure 3. These edges are
the best choices of both of their end vertices, and the order among them
can be chosen arbitrarily. Recall that each vertex in V has at least two
of these black edges, as argued in Remark 2.1 in Section 2.

e The copied vertices V, and V3 are connected by dotted blue triangles,
as shown in Figure 3. Each such triangle connects three vertices that
originate from three different vertices of G. Notice that these triangles
can cover the entire set V, U V3, because both |V;| and |V3| are multiples
of 3, as noted in Remark 2.1. The rank of these edges is the highest
possible, and their order among themselves does not matter.

e The three copies of the same vertex in G are connected by a dashed gray
triangle in Figure 3. These edges are ranked lower than the solid black
and the dotted blue edges. The order among them does not matter.

e All edges not visible in Figure 3 are ranked lower than the listed edges,
in an arbitrary order.

The verification will happen with respect to the assignment R built by all
dashed gray edges.

If G has a triangle cover, then these solid black triangles cover the entire
set V1. In our assignment problem, these triangles translate into coalitions
of size 3. The dotted blue triangles on V, and V3 complete the alternative
assignment. It is easy to see that every agent is better off by switching to the
solid black and the dotted blue edges, since they are always ranked higher than
the dashed gray edges. Thus, R is not a POA.

Now we show the opposite. If there is a Pareto improvement to the assign-
ment marked by the dashed gray edges, then it may use none of the invisible
edges, since they are all worse than the dashed gray ones, and no player is
allowed to receive a worse partner in the improved assignment. So we need to
find an alternative assignment using only the first 3 types of edges. It is clear
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that by breaking any dashed gray coalition, at least one agent in each vertex
group should be reassigned to a different coalition. Now, players in V, U V3
can only choose a dotted blue edge instead of a dashed gray one. The sparsity
of edges gives us that if there exists one dotted blue edge in a triangle, then not
only the whole triangle is dotted blue, but we also must have all of the dotted
blue triangles in the new assignment—otherwise players remain unassigned.
Thus, in the new assignment, we must have all of the dotted blue triangles, and
V1’s vertices are free to be grouped up among themselves. This they can only
do using the solid black edges, which correspond to the original edges in G.
Thus if we have a Pareto improvement of the dashed gray assignment, then we
can cover V| with disjoint, solid black triangles. It means that G has a triangle
cover. [

Theorem 3.2 (Verification, strict and complete lists, best roommate counts,
3-person rooms). Supposing that the preferences of a player depend on the
best roommate, verifying whether a given assignment is Pareto optimal is a
coNP-complete task even if all preferences are strict and complete, and every
room is of size 3.

Proof. This proof follows the lines of the previous one, but it reduces our
problem to DIRECTED TRIANGLE COVER. For each instance D of DIRECTED
TRIANGLE COVER we construct an instance of our verification problem, con-
sisting of players with preferences, and an assignment on which Pareto opti-
mality is to be verified. We show that a directed triangle cover exists in the
first instance if and only if the assignment has a Pareto improvement.

First we draw the directed graph D and make two further copies of its
vertex set Vi. We denote these copies by V, and V3. Just as in our previous
proof, the edges of this complete graph can be partitioned into four classes.
Notice that the preferences differ from the ones in our previous proof.

e The original directed edges of D are solid and black in Figure 4. These
edges are the best choices of their starting vertex and they are ranked
below the dashed gray edges at their end vertex. The order among all
outgoing and among all incoming directed edges of the same vertex
can be chosen arbitrarily. Recall that each vertex in V] has at least one
outgoing and at least one incoming edge, as stated in Remark 2.1.

e The copied vertices V, and V3 are connected by dotted blue triangles,
as shown in Figure 4. Each such triangle connects three vertices that
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Figure 4: The assignment instance constructed to the directed graph D in the
proof of Theorem 3.2. The numbers on the edges mark the preferences of
the players. Players in V] rank their outgoing edges first, then their edges to
players in V; and V3, and then their incoming edges, as the numbers on their
solid black and dashed gray edges indicate. Preferences in the dashed gray
and dotted blue triangles are cyclic. Players in V; and V3 rank their two dashed
gray edges sandwiched between their two dotted blue edges.

originate from three different vertices of D. The rank of these edges is
either 1 or 4, so that the triangle forms a preference cycle, i.e. each edge
is ranked first by one end vertex and fourth by the other one. Edges in
the middle, ranked second and third, will be the dashed gray edges.

e The three copies of the same vertex in G are connected by a dashed
gray triangle in Figure 4. These edges are ranked between outgoing and
incoming edges in D at vertices in V1, and they are ranked second and
third by vertices in V, U V3. The order among them matters: the triangles
themselves must form a preference cycle.
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e All edges not visible in Figure 4 are ranked lower than the listed edges,
in an arbitrary order.

Again, the verification will happen with respect to the assignment R built by
all dashed gray edges.

Suppose that there exists a DIRECTED TRIANGLE COVER in D. This means
that each vertex in V| has an outgoing edge in the triangle cover, which is a first-
choice roommate in the assignment problem. So switching to the coalitions
marked by the triangle partition would be a Pareto improvement for the vertices
in V;. We need to take care of the vertices in V, U V3 too. The dotted blue
triangles complete the alternative assignment, and due to the cyclic nature of
the preferences on them, they too assign each player a first choice roommate,
which was not present in the original assignment.

Now suppose that there exists a Pareto improvement to the assignment R
marked by the dashed gray edges. In R, the best roommate of each player
is ranked right below its outgoing black edges for vertices in Vi, and second
for vertices in V, and V3. In order to make at least one player, say, player i
better off, the alternative assignment R’ must allocate i to a more preferred
neighbor j. This j must be the end vertex of the directed solid black edge (i, j),
if i € V1, and i’s first choice roommate (dotted blue edge) if i € V, U V3. This is
only possible if we find a (non-directed) triangle partition in the constructed
graph so that it contains at least one solid black or dotted blue edge, which
is (i, 7). We now search for a third player to complete the coalition in R'. Since
J just received a bad roommate in the person of i, she must have her first or
second choice in the room as well, in order to keep her satisfied. Her second
choice is one of her copies j, but j’ only ranks j third, and i beyond all listed
players, so her situation would worsen if we put her up in a room with i and ;.
On the other hand, j’s first choice edge (j,¢) is of the same color as (i, ).
The position of / is not worse than in the original assignment if and only if
(i, j,¢) forms a blue or a directed black triangle. This shows that only red, blue,
or directed black triangles can appear in a Pareto improved assignment. The
existence of such a monochromatic triangle partition implies that there is a
directed triangle cover in D. ]

4. EXISTENCE

In all investigated cases, if the instance admits a feasible assignment, then it
also admits a Pareto optimal one. Due to monotonicity in the rank of the worst
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or best roommate, a chain of Pareto improvements starting at any feasible
assignment must end in a POA, which is thus guaranteed to exist if a feasible
assignment exists. This is the case if lists are complete, since all assignments
filling up all rooms are then feasible. This is not so for incomplete lists—by
declaring some other players unacceptable, players can easily reach a situation
where not even feasible assignments exist. We now show that in all cases
with incomplete lists, deciding whether a feasible assignment, and thus, a POA
exists, is NP-complete. Notice that since feasibility is already hard, it bears
no importance whether a player judges the coalition based on the best or the
worst roommate.

Theorem 4.1 (Existence, strict and incomplete lists, best or worst roommate
counts, 3-person rooms). If lists are incomplete, then deciding whether a
feasible assignment exists is NP-complete even if all preferences are strict, and
every room is of size 3.

Proof. We show hardness via a reduction from TRIANGLE COVER. Given
a graph G as the input of this problem, we associate players with vertices
and acceptable roommate pairs with edges. The preferences within the set
of acceptable agents can be chosen arbitrarily, because they play no role in
feasibility. Since feasible assignments must form coalitions of size exactly 3,
each assignment in our problem corresponds to a triangle cover and vice
versa. []

This theorem shows that it is computationally infeasible to find a POA
if lists are incomplete, because even deciding whether there exists a POA is
NP-complete. Moreover, even if we are given a feasible assignment—which
guarantees the existence of a POA—it is also computationally infeasible to find
a Pareto improvement, since deciding whether the given assignment itself is a
POA is coNP-complete, as shown in Theorems 3.1 and 3.2. From this point on,
we can thus restrict our attention to instances with complete lists.

5. FINDING A PARETO OPTIMAL ASSIGNMENT

As already mentioned in the previous section, a POA is guaranteed to exist
if lists are complete. Here we distinguish all 2° cases based on three basic
features of the problem, listed as points (ii)—(iv) in the Introduction.
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5.1. Easy cases

We start by describing and analyzing the tailored variants of serial dictatorship
in the cases where it delivers a POA. As usual, the core of serial dictatorship is
that each dictator specifies a set of solutions that guarantee her one of her most
desirable outcomes, and all later dictators must choose similarly, but within the
already specified set. We show here algorithms that implement this principle
under the problem settings we study.

Our algorithms are simple, and suited for the very specific problems in
question, whereas the Preference Refinement Algorithm (PRA) of Aziz et al.
(2013) for computing a Pareto optimal and individually rational assignment
in hedonic games is generic, but also more complicated. Besides this, it
invokes an oracle for solving a problem they call ‘Perfect Partition’. Perfect
Partition asks for an assignment that gives each player one of her best outcomes.
(Notice that in this paper, we use the term perfectness in its traditional, graph-
theoretical sense, where it means that each player is matched.) PRA starts off
coarsening, and then refining the preferences of players according to certain
rules. Then, it calls the oracle to compute a Perfect Partition with the refined
preferences, which is shown to be Pareto optimal in the original instance. Here
we give a much more direct interpretation of serial dictatorship, focusing only
on the specific problem variant we discuss in Theorems 5.1 and 5.2. Our
interpretations are then illustrated in Example 5.1.

Theorem 5.1 (Finding a POA, strict and complete lists, best roommate counts,
3-person rooms). If lists are strict and complete, all rooms are of capacity 3,
and the best roommate counts, then serial dictatorship delivers a POA.

Proof. The exact implementation of serial dictatorship works in rounds, as
follows. The first dictator points at her first choice. We fix this pair, and
immediately assign them their final room R;, which will be completed by the
third player later. The same happens in each round: the current dictator points
at her first choice available roommate, we fix this pair, and assign them a
room. If one player in the new pair is already in a room, the other one joins
her, otherwise a new room is opened for them.
For dictator i, player j is available, if both of the following hold.

1. The number of roommates already assigned to a room together with
either i or j is at most one in total, or i and j are already assigned to the
same room.
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2. If there is no further room to open, then j must be a player already
assigned to a room.

We now show that this procedure indeed delivers a POA. Assume indirectly
that an assignment R' = R|,R),...,R; Pareto dominates the outcome R =
R1{,R;,...,R; of our algorithm. Among the players who are better off in R/,
we choose the one who comes earliest in the order of dictators. Let this player
be i. We know that j, the best roommate of i in R, is strictly better than i’s
best roommate in R. In i’s turn in our algorithm, j thus was not an available
to i. The reason for this must be one of the above two points.

If the first point was the reason, then some of the earlier dictators already
reserved i and j for themselves. Since we assume that i is the earliest dictator
who is better off in R’ than in R, the choices of all earlier dictators must stay
intact in R’. Otherwise, at least one of them receives a best roommate in R who
is preferred to the best roommate of the same agent in R’, which contradicts
the fact that R is a Pareto improvement. The second case is when all k rooms
had already been open as i was considering to point to j, and neither of them
had been assigned to a room yet. At least one of the fixed pairs must be split up
in R, if i and j are assigned to the same room in it. The earlier dictator in this
pair must precede iin the order of dictators, and thus any change in her best
allocated roommate must worsen her situation, which contradicts the Pareto
improvement property. L

Theorem 5.2 (Finding a POA, strict and complete lists, worst roommate counts,
ri-person rooms, including 3-person rooms). If lists are strict and complete,
the rooms are of arbitrary capacity, and the worst roommate counts, then serial
dictatorship delivers a POA.

Proof. 1f the worst roommate counts, serial dictatorship can be interpreted as
follows. In each round, the dictator moves into one of the smallest available
rooms of size r; with her best r; — 1 choice roommates. The coalition is fixed
and the room is removed from the set of available rooms.

To see correctness, we apply induction. Clearly, the price for improving
the position of a dictator is to harm some previous dictator, because serial
dictatorship gives her the fewest possible top choices still available on her list.
Thus the output of the mechanism is a POA. O]

Example 5.1. Figure 5 illustrates an instance. We run serial dictatorship in
the three settings in which it delivers a POA. We assume the order of dictators
tobel, 2,...,9.
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1:54739682 4:36729681 7:12934685
2214598637 5:36278419 8:63719542
3:25491678 6: 72854913 9:24167385

Figure 5: An instance with 9 players and strictly ordered complete lists.

e strict and complete lists, best roommate counts, 3-person rooms (The-
orem 5.1)
The first dictator, player 1 chooses her first choice partner player 5 and
they become a fixed pair. Then, the second dictator, player 2 chooses
player 1, so these three form a fixed triplet. The third dictator cannot
choose her first or second choice players 2 and 5, thus she becomes
a fixed pair with player 4. Now it is exactly player 4 who is next to
choose, but since she is already coupled up with her first choice room-
mate player 3, she does not change the current assignment. Player 5
is already in a fixed room. Player 6 opens the third room together with
player 7, who then adds player 9 to this room, because her first two
choices are already taken. Player 8 then joins the room of player 3. The
outcome is the following partition: (125),(3438),(679).

e strict and complete lists, worst roommate counts, 3-person rooms (The-
orem 5.2)
The first dictator, player 1 chooses her first and second choice partners
player 5 and 4, and they occupy a room. The next dictator is player 2,
whose first 3 choices are taken, thus she moves into a room with her
two best available choices, players 9 and 8. The remaining 3 players
are assigned to the last room. The outcome is the following partition:

(145),(289),(367).

e strict and complete lists, worst roommate counts, r;-person rooms
(Theorem 5.2)
Let the rooms have capacity 2, 3, and 4, respectively. The first dictator,
player 1 chooses her first choice partner player 5, and they occupy the
smallest room. The next dictator is player 2, who cannot choose her first
choice player 1, since her assignment is already fixed, thus she moves
into the 3-person room with her best available choices, players 4 and 9.
The remaining 4 players are assigned to the largest room. The outcome
is the following partition: (15),(249),(3678).
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5.2. Hard cases

In all remaining cases, finding a POA is computationally infeasible, even though
it is guaranteed to exist. We show this in two steps, similarly to the technique
used by Aziz et al. (2013). First we observe that either all POAs of an instance
or none of them satisfy the property that all players receive one of their best
outcomes. Then, we show that an NP-complete problem can be reduced to
the decision problem of answering whether a POA exists with this property.
From this it follows that by computing any POA in polynomial time, one could
answer the NP-complete decision problem in polynomial time. Below we give
three proofs for three different settings.

Theorem 5.3 (Finding a POA, strict and complete lists, best roommate counts,
ri-person rooms). If lists are strict and complete, the rooms are of arbitrary
capacity, and the best roommate counts, then computing a POA is at least as
hard as the NP-complete UNARY BIN PACKING problem.

Proof. We construct an instance of the POA problem to each input of UNARY
BIN PACKING with item size at least 2. We will show that all POAs order each
player to a room with a first ranked roommate if and only if a bin packing
exists.

Each item of size i > 2 (recall Remark 2.2) in UNARY BIN PACKING
corresponds to i players in the POA problem. The players of one item have
their unique first choice player among themselves, in a circular manner. The
rest of the preference lists can be chosen arbitrarily. To guarantee that all
players have a first choice roommate, we need to keep every preference cycle
together. This is equivalent to keeping the items of the bin packing problem
unsplit, and thus it is possible if and only if there is a perfect bin packing.

This reduction from UNARY BIN PACKING with bin size b immediately
implies that the proof is valid even if all rooms are of equal size b. L

Theorem 5.4 (Finding a POA, ties, complete lists, best roommate counts,
3-person rooms). If lists are weakly ordered and complete, the rooms are of
capacity 3, and the best roommate counts, then computing a POA is at least as
hard as the NP-complete DIRECTED TRIANGLE COVER problem.

Proof. We construct an instance of the POA problem to each input of DI-
RECTED TRIANGLE COVER. Let us consider a digraph D, where all vertices
have at least one outgoing and at least one incoming edge, as stated in Re-
mark 2.1. Vertices in D correspond to players in our assignment problem. If a
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player i has an outgoing edge towards player j in D, then i ranks j first. All
other players are ranked second by i. A directed triangle cover exists in D if
and only if there is an assignment where each player has at least one first choice
roommate. This latter happens if and only if all POAs have this property. [

Theorem 5.5 (Finding a POA, ties, complete lists, worst roommate counts,
3-person rooms). If lists are weakly ordered and complete, the rooms are of
capacity 3, and the worst roommate counts, then computing a POA is at least
as hard as the NP-complete TRIANGLE COVER problem.

Proof. To each input G of the TRIANGLE COVER problem, we now construct
an instance of the POA problem. Remember that according to Remark 2.1, G
has no isolated or degree 1 vertex. Starting with G, let us assign rank 1 to all
neighbors of each player. Now we complete G by adding all missing edges
and assign rank 2 on both end vertices of such an edge.

We claim that there is a POA that gives every player two of her first ranked
roommates if and only if a triangle cover exists in G. If a triangle cover exists
in G, then it delivers an assignment consisting of original edges only, thus
it is possible to assign each player into a room with first-choice roommates
only. Since each player reaches her best outcome in this assignment, it also
must be Pareto optimal. To see the other direction, we assume that there is a
POA that orders each player to a room with only first ranked roommates. This
assignment must then consist of the edges of G exclusively, and thus it is a
triangle cover in G. []

6. CONCLUSION

We have studied the complexity issues in the Pareto optimal coalition for-
mation problem in which players have preferences over each other, and the
coalitions must be of a fixed size. We have investigated a number of variants
of this problem and determined the complexity of verifying Pareto optimality,
deciding the existence of a POA, and finding a POA.

One natural direction of future research is to forgo the requirement on the
perfectness of the assignment. In this case, due to the feasibility of the empty
assignment and monotonicity, a POA trivially exists, so our question raised in
Section 4 about the existence of an optimal solution does not apply. However,
allowing the assignment to be imperfect leads to unnatural strategies in serial
dictatorship. If the worst roommate matters, then the dictator is better off
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choosing her single best roommate and not letting anyone else into the room,
however large it is. Besides this, one needs to clarify how to deal with the
option of staying alone in a large room, which was prohibited in our setting.
Depending on the total capacity of rooms, and the way of calculating the
value of an imperfect coalition, one can define several natural variants of the
problem. We remark that our results in Sections 3 and 5 remain valid for
imperfect assignments as well, if the total capacity of rooms equals the number
of players, but some agents might be left unassigned—one needs to marginally
adjust serial dictatorship, while the hardness proofs carry over.

Besides this, it might be interesting to investigate analogous problems with
cardinal preferences instead of ordinal ones, an outside option for players, or
strategic behaviour.
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